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ABSTRACT 

There is considerable evidence that emotion dysregulation and self-control impairments 

lead to escalated aggression in populations with psychiatric disorders. However, convergent 

quantitative evidence on the neural network explaining how aggression arises is still lacking. 

To address this gap, peak activations extracted from extant functional magnetic resonance 

imaging (fMRI) studies were synthesized through coordinate-based meta-analyses. A 

systematic search in the PubMed database was conducted and 26 fMRI studies met inclusion 

criteria. Three separate Activation Likelihood Estimation (ALE) meta-analyses were 

performed on i. Individual differences in trait aggression (TA) studies, ii. Individual 

differences in TA studies examining executive functioning, and iii. Elicited aggression (EA) 

studies across fMRI behavioral paradigms. Ensuing clusters from ALE meta-analyses were 

further treated as seeds for follow-up investigations on consensus connectivity networks 

(CCN) delineated from meta-analytic connectivity modeling (MACM) and resting-state 

functional connectivity (RSFC) to further characterize their physiological functions. Finally, 

we obtained a data-driven functional characterization of the ensuing clusters and their 

networks. This approach offers a boarder view of the ensuing clusters using a boarder 

network perspective. In TA, aberrant brain activations were found only in the right 

precuneus. Follow-up analyses revealed that the precuneus seed was within the 
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frontal-parietal network (FPN) associated with action inhibition, visuospatial processing and 

higher-level cognition. With further restricting to only experiments examining executive 

functioning, convergent evidence was found in the right rolandic operculum (RO), 

midcingulate cortex (MCC), precentral gyrus (PrG) and precuneus. Follow-up analyses 

suggested that RO, MCC and PrG may belong to a common cognitive control network while 

the MCC seems to be the hub of this network. In EA, we only revealed a convergent region in 

the left postcentral gyrus. Follow-up CCN analyses and functional characterizations 

suggested that this region may also belong to the same cognitive control network found in 

the TA sub-analysis. Our results suggested that escalated aggression arises from abnormal 

precuneus activities within the FPN, disrupting the recruitment of other large-scale networks 

such as adaptive cognitive control network. Consequently, failure to recruit such a network 

results in an inability to generate adaptive responses, increasing the likelihood of acting 

aggressively. 
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INTRODUCTION 

 

Aggression is in the behavioral repertoire of virtually all animals and serves an evolutionarily 

adaptive purpose in survival, where it is hostile when defending threats and instrumental in 

competition for limited resources and increasing mating opportunities (Buss and Shackelford 

1997). Aggression, however, can become maladaptive and destructive when it results in 

violating the social norms that maintain the order of a society. Several subgroups of 

psychiatric populations are often reported to be more susceptible to escalated aggression, 

including individuals with intermittent explosive disorder (Coccaro et al. 1998; Olvera 2002), 

schizophrenia (Milton et al. 2001; Douglas et al. 2009), psychopathy (Glenn and Raine 2008; 

Blair 2010), and antisocial or borderline personality disorders (Dolan 2010; Soloff et al. 

2017). 

 

Escalated aggression has been conceptualized as reflecting increased negative affect (i.e. 

anger) in the context of under-regulation of aggressive impulses (Davidson et al. 2000). The 

brain systems implicated in aggression were qualitatively postulated in a wider perturbed 

frontolimbic network functionally associated with affective processing, self-regulation, and 

reinforcement-based decision making (Davidson et al. 2000; Siever 2008; Coccaro et al. 2011; 

Blair 2016), comprising the amygdala, hypothalamus, periaqueductal gray, cingulate cortex, 
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ventrolateral and medial prefrontal cortex, supplementary motor area, anterior insular 

cortex and striatum. Notably, other regions like posterior medial cortices are rarely discussed 

in the aggression literature but a recent large scale structural MRI study (N = 556) showed 

that the thickness of the precuneus and its contiguous regions were positively correlated 

with aggressive behavior in girls (Thijssen et al. 2015). 

 

Instead of distinct networks for numerous cognitive functions, we noticed that this wider 

frontolimbic network is overlapping with a superordinate cognitive control network 

subserving various executive functions involving flexibility, working memory, response 

initiation and inhibition (Miller 2000; Niendam et al. 2012), suggesting that an executive 

functioning neural network may play an cardinal role in modulating aggressive behavior. 

Indeed, psychological studies have established a link between executive functions and 

aggression in healthy individuals (Hoaken et al. 2003; Denson et al. 2012). In accordance, the 

General Aggression Model (Anderson and Bushman 2002; Allen et al. 2018) proposed that 

aggressive acts are built on the (re-)appraisal processes while available cognitive resources 

play a key factor to bias the behavioral outcomes to either impulsive or thoughtful responses 

(Please note that the response can be either adaptive or maladaptive). Therefore, proper 

executive functioning signifies to ensure adaptive and non-aggressive behavior. More 

importantly, executive function impairment seems to be a core feature across 



 6 

psychopathology (Diamond 2013; Snyder et al. 2015). Recent neuroimaging meta-analyses 

have identified domain-nonspecific neural disruptions across psychiatric disorders in the 

salience (or anterior-cingulo-insular) network (Goodkind et al. 2015; McTeague et al. 2017). 

Evident for transdiagnostic impaired executive functioning leads to the question of whether 

there is a common disrupted cognitive control network in aggressive individuals with 

psychiatric diagnoses. 

 

Previous functional magnetic resonance imaging (fMRI) studies of aggression focused 

primarily on cognitive processing including working memory (Kumari et al. 2006) and 

inhibition (Joyal et al. 2007), affective processes including perception of affective stimuli (Lee 

et al. 2009; Bobes et al. 2013) and emotional regulation (Kalnin et al. 2011; Schiffer et al. 

2011) in aggressive individuals. These studies usually recruited participants with a history of 

violent incidents and heterogeneous psychiatric disorders who score high on measures of 

trait aggression (TA) by psychological scales. Other studies examined brain systems 

recruited when aggressive behavior is evoked. Such elicited aggression (EA) effects are 

studied through behavioral paradigms evoking aggression in a laboratory setting, for 

instances, the Taylor Aggression Paradigm (Taylor 1967), Point Subtraction Aggression 

Paradigm (Cherek et al. 1997) and violent video games (Mathiak and Weber 2006). These 

paradigms mimic aggressive responses of participants through provocation. These fMRI 
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studies, however, use relatively small sample sizes, resulting in reduced statistical power and 

an increased likelihood of false positive results (Button et al. 2013). Furthermore, some 

studies abandon whole-brain inference spaces and adopt a region-of-interest approach to 

test a priori hypotheses. While this approach increases sensitivity for the chosen regions, it 

also entails the risk of limiting discovery. 

 

Taken together, to identify a common disrupted neural network in trait aggressive 

individuals, we employed coordinate-based meta-analyses to quantitatively analyze the 

common aberrant brain activation pattern in aggressive individuals with psychiatric 

diagnoses. Specifically, we also investigate TA studies examining executive functioning (i.e., 

working memory and inhibition). To better understand the obtained clusters from trait 

aggressive individuals during the cognitive process, we also performed a meta-analysis on 

laboratory aggression paradigms. We hypothesized that both TA and EA studies should show 

convergent findings in the regions of the frontolimbic networks. Given that complex 

cognition and behavior, for example aggression, arise from dynamic interactions of 

distributed brain regions (Bressler and Menon 2010), a consensus connectivity network 

analysis was performed on each seed obtained from meta-analyses helps us estimating the 

coactivation pattern of a given seed region (i.e., how it connects with other brain regions) 

based on an independent healthy population and speculating dysfunctions in the aggressive 
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population. 

 

METHOD 

 

Literature Search and Data Acquisition 

 

A systematic literature search was conducted on the PubMed database 

(https://www.ncbi.nlm.nih.gov/pubmed/). We used the keywords “aggression”, “aggressive”, 

“violence”, “violent”, “intermittent explosive disorder” paired with “fMRI” or “functional 

magnetic resonance imaging” through June 2018. Further manuscripts were identified by 

reference tracing in the papers retrieved by the original search and textual reviews on the 

neurobiology of aggression (Hawkins and Trobst 2000; Anderson and Bushman 2002; Dolan 

2010; Coccaro et al. 2011; Hoptman et al. 2011; Weiss 2012; Blair 2016). Studies were 

included if they 1) were peer-reviewed journal articles available in English, 2) reported 

whole-brain thresholded results; therefore, those results that restricted their analysis to a 

priori regions of interest (ROIs) were excluded, 3) reported coordinates in either the 

Montreal Neurological Institute (MNI) or Talairach standard stereotactic space, 4) for trait 

aggression (TA) studies, reported contrasts between aggressive psychiatric individuals with 

psychiatric disorders and their non-aggressive counterparts; psychiatric individuals refer to a 

https://www.ncbi.nlm.nih.gov/pubmed/
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formal diagnosis of either Axis I or II disorders including schizophrenia, intermittent explosive 

disorder and personality disorders, 5) for elicited aggression (EA) studies, reported either 

contrasts between induced aggressive and non-aggressive events on a virtual or real human 

targets or a correlation analysis of aggressive response and BOLD signal change within the 

experimental group, 6) recruited participants older than 18. We were only interested in the 

general aberrant activation changes associated with aggression so hyper- and 

hypo-activations were pooled for the current meta-analyses. Figure 1 illustrates the steps of 

systematic search based on PRISMA criteria (Moher et al. 2015). 

 

[Insert Figure 1 here] 

 

In the context of ALE, the term “study” refers to a scientific publication while the term 

“experiment” refers to any single contrast analysis within a study (Laird et al. 2011). A total of 

26 studies met our inclusion criteria (see Table 1 for details of the studies, Appendix I for full 

citations and Appendix II for all foci included in the current meta-analyses). Based on the 

original contrasts reported by the studies, we assigned them into two groups. Studies 

enrolling psychiatric individuals with a history of violence, e.g., violent schizophrenia patients 

compared to their non-aggressive counterparts, were categorized as studies on trait 

aggression (TA; N = 13). Studies using a behavioral paradigm to compare BOLD responses 
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during induced aggression were categorized as studies of elicited aggression (EA; N = 13). A 

follow-up analysis on fMRI tasks related to executive functioning was performed. A total of 

569 participants with 67 experiments (23 executive functioning experiments) from TA studies 

and a total of 393 with 22 experiments from EA studies were included. All activation foci 

reported in a Talairach space were linearly transformed into a MNI space (Lancaster et al. 

2007). 

 

[Insert Table 1 here] 

 

Coordinate-Based Meta-Analysis: ALE 

 

The latest revised version of activation likelihood estimation (ALE) algorithm (Turkeltaub et 

al. 2002; Eickhoff et al. 2009, 2012) was implemented in MATLAB to perform our 

coordinate-based meta-analysis. Through modeling activation peak maxima were identified 

from the existing literature as 3-demensional probability distributions centered at the given 

coordinate rather than 1-dimensional points, the algorithm aims at quantitatively identifying 

topographic convergence across studies while accommodating spatial uncertainty. ALE is a 

well-established method adopted in multiple studies (Kohn et al. 2014; Nickl-Jockschat et al. 

2015; Müller et al. 2017) and involves three main steps. First, to compensate for the spatial 
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uncertainty due to a between-template and between-subject variance in most neuroimaging 

studies (Eickhoff et al. 2009), all the foci are modeled as centers of 3-demensional Gaussian 

probability distributions. Assuming a larger sample size is more likely to provide a reliable 

approximation of a “true” localization, studies are further weighted by the number of 

participants per study. Thus, a larger sample size leads to a smaller Gaussian distribution. 

Second, a modeled activation (MA) map is generated through combining the probabilities of 

all activation foci in a single experiment for each voxel (Turkeltaub et al. 2012). A voxel-wise 

ALE score is determined by calculating the union of these MA maps. Finally, to test 

significance, the yielded scores are compared with an empirical random spatial 

null-distribution among all MA maps yielding a p value which was thresholded at p < 0.05 

with a cluster-level family-wise error (cFWE) correction (cluster-forming threshold at 

voxel-level: p < 0.001) which provides the best compromise between sensitivty and 

specificity (Hopkins et al. 2016). Neuroanatomical labeling of the ensuing clusters was 

derived from the SPM anatomy toolbox (Eickhoff et al. 2005). 

 

Consensus Connectivity Networks (CCNs): Conjunction Analysis 

 

Unlike simple physiological process such as primary sensory perception, complex cognition 

and behavior, such as aggression, arise from dynamic interactions of distributed brain 
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regions (Bressler and Menon 2010). Knowing the connectivity profile of a given brain region 

in healthy subjects helps to delineate the physiological functions of that region and allows to 

formulate data-driven hypotheses regarding dysfunctions, e.g., in population with escalated 

aggression. To identify the functional connectivity patterns that are consistently engaged 

across two different states of brain functions (i.e. task-dependent and task-independent), we 

performed a conjunction analysis across coactivation maps obtained from meta-analytic 

connectivity modeling (MACM) and resting-state functional connectivity (RSFC) using the 

strict minimum statistics with an individual seed (Amft et al. 2015). As the brain regions 

identified by this approach exhibit connectivity with the seed in two independent modalities 

of connectivity simultaneously, the ensuing networks can be regarded as especially robust 

(Nickl-Jockschat et al. 2015). The methodological details of MACM and RSFC are described 

later in this section. Surviving clusters from this conjunction analysis were, thus, functionally 

associated with both task-dependent and task-independent brain states. To reduce the 

likelihood of false positive findings, ensuing clusters smaller than 50 voxels were discarded. 

The CCN approach allows for inference on the involvement of clusters ensuing from our ALE 

meta-analyses in larger-scale cortical networks with reference to healthy populations. As 

stated above, our basic aim was the identification of neural networks in which the seed 

regions involve in to further characterize their physiological function. 
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Task-Dependent Functional Connectivity: MACM. To characterize the functional connectivity 

among ensuing clusters from our original ALE meta-analyses, we determined the 

co-activation profile based on meta-analytic connectivity modeling (MACM). MACM was 

performed to examine the functional connectivity of a specific seed region (i.e. regions from 

our meta-analysis results) through investigating patterns of coactivation across large-scale 

neuroimaging experiments on the BrainMap Database (Fox et al. 2014). All experiments that 

activate at least one focus within the seed volume were retrieved. Subsequently, 

meta-analytic modeling using the ALE algorithm was employed to test for convergence 

across the foci reported in these experiments. With this approach, we aimed at a general 

neurobiological task-based co-activation profile for our ROIs. A cFWE-corrected threshold for 

multiple comparisons at p < 0.05 (cluster-forming threshold at voxel-level: p < 0.001) was 

adopted. 

 

Task-Independent Functional Connectivity: RSFC. The same seeds obtained from our 

original ALE meta-analyses were also used for a resting-state functional connectivity (RSFC) 

analysis to assess a task independent modality of functional connectivity (Bzdok et al. 2015). 

Resting-state data were obtained from an open online database: the enhanced Nathan Kline 

Institute Rockland-sample (http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). A total of 

124 healthy subjects without a history of psychiatric or neurological disorders aged between 

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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20 and 75 years (mean age: 46.56 ± 17.56 years; 40 males, 84 females) was included. 404 

echo-planar imaging (EPI) images of each subject were acquired on a Siemens TrioTim 3T 

scanner using blood-oxygen-level-dependent (BOLD) contrast [Multiband EPI sequence with 

acceleration factor 4, repetition time (TR) = 1.4 s, echo time (TE) = 30 ms, flip angle = 65°, 

in-plane resolution = 2.0 x 2.0 mm, 64 axial slices with 2.0 mm thickness, covering the whole 

brain]. To allow for magnetic field saturation, the first four scans of each subject were 

discarded; the remaining 400 images were processed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). First, images were corrected for head movements in a 

two-pass procedure, following by alignment to the initial volume and subsequently the 

mean of all volumes. Spatial normalization to a non-linear MNI152 template was applied to 

the mean image using the “unified segmentation” approach. The ensuing deformation was 

then applied to the individual EPI image. Finally, images were smoothed by a 5-mm FWHM 

Gaussian kernel and a band-pass filter between 0.01 and 0.08 Hz was applied to data. 

Time-courses of all voxels of a given seed of each individual subject and the time course of 

the entire seed were extracted as their first eigenvariate. Pearson correlation coefficients 

between the time series of the seeds and all other gray matter voxels across the whole brain 

were then computed to assess the RSFC. These correlation coefficients were transformed 

into Fisher’s Z-scores and entered as dependent measures in a second level analysis of 

covariance, co-varying with age, gender and handedness. The RSFC results, consistent with 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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MACM analysis, were thresholded at a cFWE corrected p < 0.05 (cluster-forming threshold at 

voxel-level: p < 0.001). 

 

Functional Characterization through a Meta-Data Driven Approach 

 

Functional properties of the ensuing clusters and their CCNs were further assessed, using 

the “Behavioral Domain” and “Paradigm Class” meta-data categories assigned for each 

neuroimaging study stored in the BrainMap database (Laird et al. 2011). BrainMap taxonomy 

for “Behavioral Domain” codes mental processes into five major categories: action, cognition, 

emotion, interoception and perception; each category is further subdivided into 

sub-categories. “Paradigm Class” describes the categorization of the employed behavioral 

task (e.g. reward, Stroop or go/no-go, etc.) of a single study. Details about the taxonomy can 

be retrieved from the BrainMap website (http://www.brainmap.org/taxonomy/). In this 

study, we were interested in the precise functional associations of the ensuing clusters and 

their CCNs while a “Paradigm Class” may involve various “Behavioral domains”; thus, only 

functional categorization on “Behavioral Domains” was conducted. Both forward inferences 

and reverse inferences on the functional categorization using binomial test (FDR corrected p 

< 0.05) were performed (Eickhoff et al. 2011). The former, P(Activation|Domain), indicates 

the probability of activation in a neuroanatomical seed given a psychological process or 

http://www.brainmap.org/taxonomy/
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behavioral task; the latter, P(Domain|Activation), tests the probability of observing a 

psychological process or behavioral task given a brain activation. 

 

 

RESULTS 

 

Overall Analyses on Trait and Elicited Aggression 

 

Trait Aggression: Across 67 experiments in TA individuals, our ALE meta-analysis revealed a 

convergent cluster in the right precuneus (peak MNI: 4/-64/48; k = 116 voxels; see Figure 

2A). Functional characterization showed that the ensuing cluster was significantly associated 

with behavioral domains of action inhibition, reasoning, working memory, sexuality 

interoception, and motion vision perception. The functional coactivation pattern of the 

ensuing cluster was examined with MACM and RSFC. For more details see Table S1 and 

Figure S1 in the Supplementary Materials. The CCN of the precuneus seed (see Table 2A and 

Figure 3A) comprised the bilateral precuneus, bilateral middle occipital gyrus, bilateral 

middle frontal gyrus with the right clusters extending into the superior frontal gyrus. 

Functional characterization documented that the ensuing consensus network was associated 

with a wide range of the cognition domain including space, attention, explicit memory, 
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working memory and reasoning plus other behavioral domains including interoception of 

sleep, action inhibition, visual perception of motion and shape (see Figure 4A for forward 

inference and reverse inference). 

 

Elicited Aggression: Across 22 experiments in TA individuals, our ALE meta-analysis revealed 

a convergent cluster in the left postcentral gyrus (peak MNI: -40/-28/58; k = 99 voxels; see 

Figure 2A). This result does not change after restricting only studies using the Taylor 

Aggression Paradigms. Functional characterization showed that the ensuing cluster was 

significantly and exclusively associated with action execution. The functional connectivity 

network of the ensuing cluster was examined with MACM and RSFC. For more details see 

Table S1 and Figure S1 in the Supplementary Materials. The CCN of the postcentral gyrus 

seed (see Table 2A for abbreviations and Figure 3A) comprised the bilateral postcentral gyrus 

extending into bilateral midcingulate cortex, bilateral precentral gyrus, right cerebellum, left 

insula, and left thalamus. Functional characterization documented that the ensuing 

consensus network was associated with pain perception as well as execution, preparation 

and imagination of actions (see Figure 4A for forward inference and reverse inference). 

 

Subanalyses on Executive Functioning in Trait Aggression 
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Activation Patterns during Executive Functioning: Across 23 experiments in TA studies during 

performing executive functions, our ALE meta-analysis revealed convergent clusters in the 

right precuneus (peak MNI: 5/-63/49; k = 171 voxels), the left midcingulate cortex (peak 

MNI: -9/10/37; k = 110 voxels), the rolandic operculum (peak MNI: 51/-9/14; k = 95 voxels), 

the precentral gyrus (peak MNI: 42/4/50; k = 91 voxels). The functional connectivity network 

of the ensuing cluster was examined with MACM and RSFC. For more details see Table S1 

and Figure S2 in the Supplementary Materials. 

 

The CCN of the right rolandic operculum seed (see Table 2B for abbreviations and Figure 3B) 

comprised the right rolandic operculum and Heschls gyrus plus the bilateral insular cortices, 

superior temporal gyri, postcentral gyri, midcingulate cortices, and posterior-medial frontal 

gyri. Functional characterization documented that the ensuing consensus network was 

associated with interoception, action execution, motor learning, perception in pain and 

audition (see Figure 4B for forward inference and reverse inference). 

 

The CCN of the right midcingulate cortex seed (see Table 2B for abbreviations and Figure 3B) 

comprised the bilateral midcingulate cortices, rolandic operculum, insula, thalamus, 

precentral gyri, inferior frontal gyri, and posterior-medial frontal gyri. The left hemisphere 

clusters also included the middle frontal gyrus, temporal pole and anterior cingulate cortex 
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and the right hemisphere clusters also included the putamen, pallidum, postcentral gyrus 

and supramarginal gurus. Functional characterization documented that the ensuing 

consensus network was associated with action execution, language cognition, perception in 

pain and gustation (see Figure 4B for forward inference and reverse inference). 

 

The CCN of the right precentral gyrus seed (see Table 2B for abbreviations and Figure 3B) 

comprised the bilateral precentral gyri, insula lobes, inferior frontal gyri, posterior-medial 

frontal gyri, and inferior parietal lobules. The right hemisphere clusters also included the 

middle frontal gyrus, superior temporal gyrus, supramarginal gyrus, middle occipital gyrus, 

middle temporal gyrus, midcingulate cortex and the right hemisphere clusters also included 

the superior parietal lobule. Functional characterization documented that the ensuing 

consensus network was associated with space and language cognition (see Figure 4B for 

forward inference and reverse inference). 

 

Like the ALE seed from the overall result, the CCN of the precuneus seed in the sub-analysis 

(see Table 2B and Figure 3B) comprised the bilateral precuneus, bilateral middle occipital 

gyrus, bilateral middle frontal gyrus with the right clusters extending into the superior 

frontal gyrus. Functional characterization documented that the ensuing consensus network 

was associated with a wide range of the cognition domain including space, attention, explicit 
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memory, working memory and reasoning plus other behavioral domains including 

interoception of sleep, action inhibition, visual perception of motion and shape (see Figure 4 

for forward inference and reverse inference). 

 

 

DISCUSSION 

 

Extant fMRI literature in aggression can be broadly divided into two directions: (i) examining 

neural mechanisms in violent or aggressive samples with high trait aggression (TA) and (ii) 

examining neural mechanisms in elicited aggression (EA) through in a laboratory setting in a 

healthy sample. With the aid of data-driven coactivation analyses and functional 

characterization, the present coordinate-based meta-analysis quantitatively summarized the 

reported peak coordinates from these two directions to probe a generic functional 

neuroanatomy of aggression. We revealed that aggressive individuals, comparing to their 

non-aggressive counterparts, demonstrated aberrant activation changes in the right 

precuneus across different fMRI paradigms. With further restricting to experiments that 

required executive functions, our results displayed that disrupted activations associated with 

a cognitive control network in aggressive individuals comprised the right rolandic operculum 

(RO), midcingulate cortex (MCC), precentral gyrus (PrG) and precuneus. In provoked healthy 
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subjects across EA experiments, the left postcentral gyrus was consistently involved. 

 

The Disrupted Precuneus-Related Networks in Trait Aggressive Individuals 

 

Surprisingly, aggressive individuals from TA studies were not characterized by significant 

abnormalities in limbic activation, but rather in the precuneus, which is part of the 

regulatory system and is implicated in self-consciousness and self-referential processes 

(Cavanna and Trimble 2006). Suppressing aggressive proneness initiated by external stimuli 

requires top-down cognitive control, with failure leading to escalated aggression (Davidson 

et al. 2000). Neuroanatomically, the precuneus is widely interconnected within the 

frontoparietal network (FPN) associated with elaborating highly-integrated and associative 

information (Cavanna and Trimble 2006). Functionally, our CCN analysis showed the 

precuneus seed was strongly coactivated with posterior parietal and lateral frontal cortices. 

The FPN has been shown to be involved in initiating and adjusting control according to 

feedback (Dosenbach et al. 2007, 2008; Zhang and Li 2012b). Recent evidence suggested the 

FPN may serve as a flexible hub facilitating adaptive task performance (Cole et al. 2013). 

Supporting the notion that abnormal precuneus activities are linked to aberrant activations 

in a wider part of the control network, our results demonstrated that the precuneus and its 

ensuing coactivation network were functionally associated with various cognitive domains 
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related to executive functioning and higher-order cognition.  

 

Arguably, the aberrant precuneus activations from our ALE analysis could reflect disruptions 

in default mode network (DMN) linking to aggression. For example, attenuated deactivation 

in the posterior medial cortex (PMC) of the DMN was documented in the high-psychopathy 

group during a task state (Freeman et al. 2015). The PMC, comprising the precuneus, 

posterior cingulate cortex and retrosplenial cortex, consume the highest level of glucose for 

brain energy metabolism during a resting state (Gusnard and Raichle 2001; Gur et al. 2009); 

when behavior becomes goal-directed, its consummation of glucose attenuates. Typically, 

the DMN comprises the bilateral temporal parietal junction, posterior cingulate cortex, 

middle temporal gyrus, precuneus and dorsomedial prefrontal cortex (dmPFC), while 

precuneus is considered as a functional core of the DMN (Utevsky et al. 2014). Notably, 

controversy on whether the precuneus is part of the DMN arose in the literature; few recent 

connectivity-based parcellation studies suggest that perhaps not the entire precuneus 

belong to the DMN (Zhang and Li 2012a; Bzdok et al. 2015). 

 

Cognitive Control Network in Aggression 

 

Diverse executive function domains may be implicated in a common superordinate 
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fronto-cingulo-parietal network (Niendam et al. 2012). With a more detailed analysis of 

experiments examining executive functioning in TA studies, we further identified aberrant 

activations in the MCC, RO, and PrG as well as the precuneus. The follow-up CCN analyses 

showed that both the RO, PrG and MCC belonged to a common network while the MCC 

seemed to be the core hub of the network. Evidence showed that the MCC and its network 

not only integrates domains including negative affect, pain and cognitive control (Vogt 2005; 

Shackman et al. 2011), but also represents an important hub for regulating emotional 

reactivity (Kohn et al. 2014) as well as intentional motor control (Hoffstaedter et al. 2014). In 

accordance, our results showed that the MCC associated CCN was functionally associated 

with action execution and pain perception. Aggression is often prompted by underlying 

motives (Bushman and Anderson 2001). This MCC network leverages socioemotional 

information (i.e. pain, negative affect and cognitive control) for translating intentions into 

adaptive motor expressions (Paus 2001; Shackman et al. 2011; Shenhav et al. 2013). Thus, 

abnormal MCC activation in aggressive individuals may lead to failure of modulating 

inappropriate and aggressive reactions. Evaluating gains and losses could therefore promote 

the choice of a socially appropriate response guided by different motives (Shackman et al. 

2011; Hillman 2013). A recent meta-analysis on youths with disruptive behavior, a 

population that often displays a wide range of phenotypical aspects of aggression such as 

hostile thoughts and violating social norms, showed that hypoactivation of the bilateral 
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anterior MCC extending into SMA, rACC and medial prefrontal cortex with bilateral ventral 

caudate was found converging across studies (Alegria et al. 2016). Another study recruiting 

healthy youth revealed that the gray matter density of the anterior MCC was positively 

associated with hostile behavior (Nakagawa et al. 2017). Taking together, our findings 

provided evidence of a disrupted adaptive control network in aggressive psychiatric 

individuals, suggesting they are less likely to generate adaptive responses. 

 

It is noteworthy that the derived CCN of the MCC was functionally associated with aspects of 

cognition related to language, suggesting that language might be engaged as a mechanism 

to mediate conflict and frustration in social situation thereby reducing risky elicited 

aggressive acts. Indeed there is evidence in children that language impairment contributes 

to aggression because of frustrating communication (Girard et al. 2014). 

 

Elicited Aggression in Healthy Samples: Issues of Paradigm Design 

 

To study neural mechanisms of aggression, paradigms including the Taylor aggression 

paradigm, point subtraction aggression paradigm and violent video games are adopted in a 

laboratory setting. Surprisingly, the right postcentral gyrus (PoG) was the only region 

identified in the meta-analysis across these aggression paradigms. In our CCN analyses, this 
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region showed a similar coactivation pattern as the MCC, RO and PrG seeds, suggesting that 

it might be involved in a common cognitive control network, while the functional 

characterization showed that the CCN of the PoG was associated with action preparation. 

Critically, our results suggested that the laboratory aggression paradigm might not capture 

completely what the paradigms intend to study. For example, the Taylor aggression 

paradigm aims at provoking a negative affect (e.g. anger) in participants and instigate 

aggressive acts for others’ punishment. It was expected that activation in limbic and 

prefrontal systems related to emotion and emotion regulation should take part during 

provocation. Such an inability is possibly caused by numerous inadequacies in these 

paradigms, such as external validity and experimental realism (Tedeschi and Quigley 1996). 

More recently, its methodological and analytic standardization were further criticized 

(Chester et al. 2018). These flexibilities eventually lead to inflation of false positive findings. 

 

We would like to emphasize that none of the paradigms used in the elicited aggression 

studies elicited an actual act of violence. The need for standardized, often reductionist, 

paradigms that meet the technical requirements for functional imaging has often been 

discussed critically, especially when it comes to the study of complex behaviors, such as 

“aggression”. This is a pertinent problem in neuroimaging. Of note, our approach to 

synthesize findings across distinct paradigms yields the great advantage to adjust for effects 
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that are associated with a specific paradigm rather than the process or domain that is aimed 

to be studied. Despite this advantage, we would like to point out that these factors need to 

be considered in the interpretation of original studies as well as meta-analyses. 

 

The Common Neural Signature in Aggression 

 

Generally, aggression can be further categorized into either a reactive (also impulsive or 

hostile) and proactive (also premediated or instrumental) subtype (e.g., Dodge and Coie 

1987; Barratt et al. 1999; Liu 2004). The former is described as an impulsive response driven 

by a strong emotional arousal under a perceived threat or provocation while the latter is 

described as a planned response driven by anticipation of reward. Real life aggression, 

however, tends to fall into a grey zone of this dichotomy. For example, a potential mass 

shooter plans for his/her revenge on the next day after he/she gets humiliated by peers. 

This example comprises elements of hostile emotions (anger out of humiliation) and 

deliberation which can be categorized as either subtypes of aggression. In fact, the 

dichotomy between reactive and proactive aggression was questioned by Bushman and 

Anderson (2001); they argued that a similar dichotomy, namely the automatic-controlled 

information processing dichotomy, can better describe the phenomenon with the 

emergence of modern cognitive theory. According to the General Aggression Model 
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(Anderson and Bushman 2002; Allen et al. 2018), the (re)appraisal processes determine 

these subtypes of aggression. In other words, varying degrees of individual control can over 

their motivation and initiation of an action would result in largely different behavioral 

outcomes. The present meta-analysis aimed at examining the neural mechanism underlying 

a generic concept of aggression (i.e., above reactive nor proactive aggression) and indeed 

there was a common disrupted adaptive cognitive control network across aggressive 

individuals with psychiatric diagnoses. Our findings offer potentials to develop novel 

treatments to ameliorate aggressive symptoms in various psychiatric populations showing 

mixed forms of reactive and proactive aggression. Undeniably, aggression subtypes may 

involve domain specific neural networks, i.e. emotion related processing in reactive 

aggression and reward related processing in proactive aggression. However, our literature 

search did not yield a clear boundary that helps us to categorize studies into various 

subtypes of aggression. Future studies could focus on the domain-specific neural 

mechanisms in different subtypes of aggression. 

 

Methodological Limitations 

 

Our study has several limitations. First, while we tried our best to minimize heterogeneity 

across fMRI studies with strict inclusion criteria, the studies still varied on numerous 
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variables including smoothing kernels, and analysis packages. These variables cannot be 

addressed separately due to methodological limitations; nevertheless ALE algorithm does 

estimate a spatial uncertainty per individual experiment to account for between-studies 

variability (Eickhoff et al. 2009). Second, included trait aggressive individuals (i.e. violent 

individuals with psychiatric diagnoses) varied on the demographical and medical 

background. However, we are looking for a least common denominator across 

heterogeneous individuals. Third, comparable to other meta-analyses our study is limited by 

the quality and scope of the available literature and the publication bias preferring positive 

results. Particularly, the small samples in each neuroimaging study might fail to randomize 

inter-subject variability such as personality traits (Simon et al. 2010). 

 

Conclusion 

 

The present coordinate-based meta-analysis identified not only the convergent brain regions 

associated with aggression but also their derived neural networks from a data-driven 

approach based on healthy participants. We argue that escalated aggression arises from 

abnormal precuneus activities within the FPN and/or DMN. This abnormality may further 

disrupt the recruitment of other large-scale networks such as adaptive cognitive control 

network comprising MCC, RO, PrG and PoG, resulting in inabilities to generate adaptive 
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responses when needed. Generally, these results support the importance of the 

(re-)appraisal process in General Aggression Model while this abnormality may be linked to 

both reactive and proactive aggression. 

  



 30 

End Note 
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Figures 

Figure 1. The PRISMA flowchart of the steps conducted in the meta-analyses  
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Figure 2. Convergent aberrant activation clusters from overall ALE analyses and 
subanalyses 
 

 
 

(A) Overall ALE analyses revealed significant clusters of convergent aberrant activation from 
all experiments in trait aggression (TA) studies and all experiments in elicited aggression (EA) 
studies. (B) Subanalyses focusing on executive functioning experiments in TA studies 
revealed significant clusters of convergent aberrant activation. All results survived a 
cluster-level FWE corrected threshold for multiple comparisons of p < 0.05 (cluster-forming 
threshold at voxel-level, p < 0.001). 
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Figure 3. Consensus connectivity networks (CCNs) for each ensuing cluster from ALE 
analyses 
 

 
 

Overlapping functional connectivity patterns between meta-analytic connectivity modeling 
(MACM) and resting-state functional connectivity (RSFC) of each ensuing cluster from ALE 
analyses. Please refer to Table 2 for peak activations of each cluster. All results survived at a 
cluster-level FWE-corrected threshold for multiple comparisons of p < 0.05 (cluster-forming 
threshold at voxel-level: p < 0.001). The right bottom color bar represents Z-values.   
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Figure 4. Forward inferences on behavioral domains in the consensus connectivity networks (CCNs) 
 

 

 
Forward inferences and reverse inferences on behavioral domains based on the BrainMap database. All results were 
significantly associated with the consensus connectivity networks (CCNs) with an FDR-corrected threshold for 
multiple comparisons of p < 0.05.  
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Tables 
Table 1.  Study samples and fMRI tasks. In an alphabetical order of first author’s last name (See Appendix I for full references) 

Studies N1 (Aggression) Age1 (M ± SD) N2 (Control) Age2 (M ± SD) fMRI Task d 

Trait Aggression      

1. Barkataki et al., 2008 14 (APD) + 12 (SZV) 34.11 ± 7.93 12 (SZ) + 14 (HC) 33.42 ± 7.68 Go / NoGo Task 

2. Coccaro et al., 2007 10 (IED) 34.30 ±7.30 10 (HC) 30.90 ± 5.60 Emotion Face Viewing 

3. Gan et al., 2016 9 (IED) 34.40 ± 7.50 9 (HC) 31.80 ± 6.50 Point Subtraction Aggression Paradigm 

4. Gregory et al., 2015 32 (VO with APD) a 38.04 ± 8.08 18 (HC) 34.80 ± 8.80 Probabilistic Response Reversal Task 

5. Joyal et al., 2007 12 (SZV+APD+SUD) NA (aged 28 to 54) 12 (SZ), 12 (HC) NA (aged 28 to 54) Go / NoGo Task 

6. Kumari et al., 2006 13 (SZV) + 10 (APD) 32.83 ± 6.27 12 (SZ), 13 (HC) 33.57 ± 7.19 Modified N-Back Task 

7. Kumari et al., 2009 13 (SZV) + 13 (APD) 33.66 ± 7.75 14 (SZ), 13 (HC) 33.75 ± 6.96 Fear Conditioning 

8. McCloskey et al., 2016 20 (IED) 33.20 ± NA 20 (HC) 32.80 ± NA Emotion Face Viewing 

9. Prehn et al., 2013a 23 (VO with APD) b 27.65 ± 8.02 13 (HC) 26.62 ± 8.40 Behavioral Investment Allocation Strategy 

10. Prehn et al., 2013b 15 (VO with APD+BPD) 27.87 ± 9.86 17 (HC) 28.88 ± 9.49 N-Back Task 

11. Schiffer et al., 2014 21 (VO with APD) 35.20 ± 8.20 23 (HC) 34.10 ± 8.90 Stroop Task 

12. Schiffer et al., 2017 45 (VO) c 36.12 ± 8.22 18 (SZ) + 18 (HC) 37.05 ± 9.05 Theory of Mind 

13. Tikàsz et al., 2016 20 (VSZ) 30.00 ± 1.60 19 (SZ) + 21 (HC) 31.14 ± 1.70 Emotion Picture Viewing 

Elicited Aggression      

14. Beyer et al., 2014 -- -- 40 (Healthy) 22.50 ± NA  Taylor Aggression Paradigm 

15. Buades-Rotger et al., 2017 -- -- 36 (Healthy) 22.00 ± 4.00 Modified Taylor Aggression Paradigm 

16. Chester et al., 2016 -- -- 69 (Healthy) 18.70 ± 0.93 Taylor Aggression Paradigm 

17. Chester et al., 2018a -- -- 24 (Healthy) 23.04 ± 2.46 Taylor Aggression Paradigm 

18. Chester et al., 2018b -- -- 61 (Healthy) 18.61 ± 0.84 Taylor Aggression Paradigm 

19. Dambacher et al., 2013 -- -- 18 (Healthy) 22.33 ± 2.35 Taylor Aggression Paradigm 

20. Emmerling et al., 2016 -- -- 15 (Healthy) 22.33 ± 2.35 Taylor Aggression Paradigm 

21. Krämer et al., 2007 -- -- 15 (Healthy) 22.90 ± 2.20 Taylor Aggression Paradigm 

22. Krämer et al., 2011 -- -- 36 (Healthy) 24.80 ± 3.10 Taylor Aggression Paradigm 

23. Mathiak et al., 2006 -- -- 13 (Healthy) NA (aged 18 to 26) Violent First-Person Shooter Gaming 

24. Mathiak et al., 2011 -- -- 13 (Healthy) 22.70 ± 2.00 Violent First-Person Shooter Gaming 

25. Repple et al., 2017 -- -- 33 (Healthy) 23.60 ± 3.20 Modified Taylor Aggression Paradigm 

26. Skibsted et al., 2017 -- -- 20 (Healthy) 24.60 ± 2.90 Point Subtraction Aggression Paradigm 

Notes: 

a. 12 VO with APD and psychopathy and 18 VO with APD but not psychopathy 

b. 23 VO with APD consists of 11 emotion hypo-reactivity and 13 emotion hyper-reactivity 

c. 13 VO with SZ plus CD/APD, 16 VO with SZ and 16 VO with CD/APD 

d. Underlined tasks were considered as executive functioning tasks 

Abbreviations: 

APD: Antisocial Personality Disorder with a Violent History, BPD: Borderline Personality Disorder, HC: Healthy Controls, IED: Intermittent Explosive Disorder, SZ: Schizophrenia 
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without a Violent History, SZV: Schizophrenia with a Violent History, SUD: Substance Use Disorder, VO: Violent Offenders 
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Table 2. Peak activations of the consensus connectivity networks (MACM ∩ RSFC) 

Cluster k (voxels) Hemisphere x y z  Cluster Breakdowns 

A. Overall Analyses 
1. Trait Aggression: Precuneus Seed 

1 788 R 9 -63 50  R Precuneus; R Superior Parietal Lobule 

2 596 L -7 -65 51  L Precuneus; L Superior Parietal Lobule 

3 281 R 37 -64 42 
 

R Angular Gyrus; R Middle Occipital Gyrus; R Inferior 

Parietal Lobule; R Superior Parietal Lobule 

4 231 R 28 10 53  R Middle Frontal Gyrus; R Superior Frontal Gyrus 

5 99 R 34 33 39  R Middle Frontal Gyrus 

6 87 R 28 58 3  R Middle Frontal Gyrus; R Superior Frontal Gyrus 

7 57 L -25 9 53  L Middle Frontal Gyrus 

2. Elicited Aggression: Postcentral Gyrus Seed 

1 3205 L -38 -26 53  L Postcentral Gyrus; L SupraMarginal Gyrus; L Superior 

Parietal Lobule; L Inferior Parietal Lobule; L Superior 

Temporal Gyrus 

2 790 R 40 -25 56  R Inferior Parietal Lobule; R Postcentral Gyrus; R Precentral 

Gyrus; R SupraMarginal Gyrus; R Superior Frontal Gyrus 

3 648 L -7 -8 54  L Posterior-Medial Frontal; L Midcingulate Cortex 

4 289 R 20 -52 -21  R Cerebellum 

5 181 L -57 4 30  L Precentral Gyrus 

6 164 R 7 -2 54  R Posterior-Medial Frontal; R Midcingulate Cortex 

7 81 L -47 -3 10  L Insula Lobe; L Rolandic Operculum 

8 64 R 58 8 24  R Precentral Gyrus 

        

B Subanalyses on Executive Functioning in Trait Aggression 
1. Rolandic Operculum Seed 

1 1325 R 53 -11 16 
 

R Rolandic Operculum; R Heschls Gyrus; R Superior 

Temporal Gyrus; R Insula Lobe; R Postcentral Gyrus 

2 1132 L -49 -13 15 
 

L Superior Temporal Gyrus; L Insula Lobe; L Postcentral 

Gyrus 

3 114 R 6 -1 54  R Posterior-Medial Frontal; R Midcingulate Cortex 

4 77 L -4 7 49  L Posterior-Medial Frontal; L Midcingulate Cortex 

        

2. Midcingulate Cortex Seed 

1 2159 L -40 5 23 

 

L Insula Lobe; L Inferior Frontal Gyrus; L Precentral Gyrus; L 

Middle Frontal Gyrus; L Rolandic Operculum; L Temporal 

Pole 
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2 962 L -7 7 45 
 

L Midcingulate Cortex; L Posterior-Medial Frontal; L 

Anterior Cingulate Cortex 

3 902 R 37 17 2 
 

R Insula Lobe; R Putamen; R Pallidum; R Rolandic 

Operculum 

4 689 R 8 14 43  R Midcingulate Cortex; R Posterior-Medial Frontal 

5 316 R 53 -1 18 
 

R Postcentral Gyrus; R Precentral Gyrus; R Inferior Frontal 

Gyrus 

6 216 L -49 -46 23  L Rolandic Operculum 

7 194 L -10 -17 6  L Thalamus 

8 193 R 10 -16 6  R Thalamus 

9 143 R 55 -23 23  R SupraMarginal Gyrus 

3. Precentral Gyrus Seed 

1 3304 R 41 16 31 
 

R Precentral Gyrus; R Insula Lobe; R Middle Frontal Gyrus; 

R inferior Frontal Gyrus 

2 1232 L -42 3 42  L Precentral Gyrus; L inferior Frontal Gyrus 

3 1165 R 46 -49 38 

 

R Inferior Parietal Lobule; R Superior Temporal Gyrus; R 

SupraMarginal Gyrus; R Middle Occipital Gyrus; R Middle 

Temporal Gyrus 

4 830 R 8 14 52  R Posterior-Medial Frontal; R Midcingulate Cortex  

5 336 L -5 9 54  L Posterior-Medial Frontal 

6 142 L -34 -52 46  L Inferior Parietal Lobule; L Superior Parietal Lobule 

7 121 L -36 20 4  L Insula Lobe 

4. Precuneus Seed 

1 1276 R 18 -63 48 

 

R Precuneus; R Angular Gyrus; R Inferior Parietal Lobule; R 

Middle Occipital Gyrus; R Superior Parietal Lobule; R 

Middle Occipital Gyrus 

2 639 L -8 -64 52  L Precuneus; L Superior Parietal Lobule 

3 264 R 28 9 53  R Middle Frontal Gyrus; R Superior Frontal Gyrus 

4 127 R 36 33 39  R Middle Frontal Gyrus 

5 113 L -27 9 55  L Middle Frontal Gyrus 

6 100 R 29 58 4  R Middle Frontal Gyrus 

Clusters smaller than 50 voxels were excluded. Coordinates are reported in a Montreal Neuroimaging Institute (MNI) 

stereotaxic space. Macroanatomical locations are labeled by SPM Anatomy Toolbox (Eickhoff et al. 2005). 
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